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The circular parallel plate capacitor: a numerical solution for 
the potential 

David F Bartlett and Timothy R Corle? 
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA 

Received 24 August 1984 

Abstract. Numerical values for V ( p ,  z )  in the vicinity of a parallel plate capacitor have 
been calculated using both the Love integral-equation method and a relaxation method. 
The two methods agree. Figures are presented showing equipotentials for three different 
values of K, the ratio between plate separation and radius. 

1. Introduction 

Recently Atkinson et a1 (1983) proposed an analytical solution for the potential of a 
circular parallel plate capacitor. As Hughes (1984) noted, this solution is incorrect 
and the reduction of this classic problem to an analytical expression remains unper- 
formed. A correct numerical solution, however, can be obtained. We have solved the 
problem using two independent numerical methods. Graphs showing equipotentials 
are presented for plate separation to radius ratios of K =$, 1 and 3. These graphs, 
originally derived to aid our own experiments, should be useful to other experimenters 
and those seeking to derive analytical expressions. 

2. Method 1: E R Love 

Imagine a circular capacitor of unit radius and of plate separation K .  The capacitor 
is centred at the origin with its axis coincident with the z axis. The top plate, 
z = + f ~ ,  p < 1 is at potential V,. The bottom plate, z = - f ~ ,  is at potential - V,. Love 
(1949) found that in this situation the potential at any point in space is given by 

1 1 
V( p, z )  = - Re vo 57 I:, ( [ p ’  + ( z  - f K  + it )2]1/’ - [ p’ + ( z  + ;K + i t  )2]1/2 

Here f( t )  is a solution of the integral equation 

This equation for f( t )  is of the Fredholm type. It may be solved by the finite-difference 
method as suggested by Fox and Goodwin (1953). Alternatively, the equation may be 
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solved iteratively, taking f( t )  = I as the initial guess. This approach was chosen by 
Love and also by us. 

We evaluated f( t )  and V( p, z )  for three different values of K :  K = f ,  1 and 3. To 
findf( t )  the initial guess was substituted into equation ( 2 ) .  The integral was evaluated 
numerically by breaking the region -1 to t l  into 64 intervals. Equation (2) could 
then be solved for f ( x ) .  Although the variables x and t are distinct, the functional 
dependences f ( x )  and f( t )  are identical. Thus the value of f ( x )  may be substituted 
for f( t ) .  The entire process was repeated with the refined value o f f (  t ) ,  yielding a new 
f ( x )  and so on. Sufficient iterations were made such that nowhere does the final value 
for f( t )  change from the penultimate value by more than one part in a thousand. In 
this manner f ( t )  was determined for 64 values of t. The function f ( t )  is real, even 
and positive. It has a maximum value at t = 0 and  minimum values at t = i 1. The 
values of f (  - l ) , f ( O )  and n, the number of iterations necessary for 0.1 ‘/o accuracy, are 
reported in columns 1-4 of table 1 below. Columns 5 and 6 compare our results with 
those reported by Fox and Goodwin (1953). It is clear from the table that as the plate 
separation decreases, both f(0) and the required number of iterations increase. This 
increase occurs because the initial guess f( t )  = 1 is correct only for a single isolated 
plate. The closer the plates, the more the charge distribution on one plate affects the 
other. 

Table 1. 

Fox and Goodwin 

3 5 1.233 1.256 - - 
1 8 1.638 1.919 1.6364 1.9127 

30 2.453 4.0 14 - - I 
3 

Given values of f( t ) ,  we used equation ( I )  to calculate the potential V ( p ,  z )  
numerically. The potential was evaluated at a discrete set of points labelled pi and zj ,  
spaced by a step interval s. To ensure a reasonably fine grid, the step interval s had 
the value A, and A for K = f, 1 and 3 respectively. Because V( p, z )  is an  odd function 
of z, the potential was evaluated for only one quadrant. 

As noted by Love, f ( t )  may also be used to calculate the capacity. In particular 
consider the integral 

This integral may be interpreted by inspecting equation ( 1 )  in the limit that ( p 2  + z2)I’* 
becomes very large. In this limit V ( p ,  z )  approaches the potential of a dipole and 
equation ( 1 )  reduces to 

In the unrationalised units customarily used for this problem the dipole strength is 
thus p = 2 V 0 Z u / r  and the capacity of the two plates is simply I /  T. We numerically 
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integrated f( t )  to obtain I. The results of our calculations appear in column 2 of table 
2 .  Column 3 compares our values with previous calculations by Cooke (1958) as 
summarised by Sneddon (1966). 

Table 2. 

K I (this work) I (Cooke) 

3 1.248 I ,242 1 
1 1.819 1.8208 
0.4 - 3,1029 
I 3.522 - 5 

These values of I were used to calculate the capacitance of the system which was 
then compared to the elementary ‘textbook’ value Celem = A/4.nd = : / K .  We found that 
C/C,,,, = 1.495, 2.316 and 4.767 for K =;, I and 3, respectively. It is interesting to 
note that even for a separation as close as one-third of the radius, the ‘textbook’ 
formula underestimates the capacity by 33%. 

3. Method 2: relaxation method 

In addition to the method outlined above, we used an iterative relaxation method to 
compute the potential. In this method a computer evaluated V( p,, z,) = V( i, j )  at each 
point of a 5 1 x 5 1 point array. The points, numbered from i = 0 to 50 and j = -25 to 
+ 2 5 ,  represented spatial locations in the vicinity of the plates. 

Initially two small half-capacitor plates were placed at j = *3, 0 s i S 7 ( K = 1) and 
charged to potential i V,. To initialise the field V( i , j )  was chosen to vary linearly 
with j in the region between the plates, and follow the dipole approximation in the 
region outside the plates. Each plate carried a charge Q determined by the Love 
method described above. Since the distance to the boundary was large, approximately 
8 plate radii, the potential at the boundary could be determined by the dipole approxi- 
mation to an accuracy of (i)* or 1.5%. 

We held the potential at the boundary and on the plates fixed and calculated the 
potential at the remaining field points via a difference equation (5). The computer 
cycled through the entire field array 400 times changing each V( i, j) until it was related 
to its four nearest neighbours through the equation 

V ( i , j + l ) +  V ( i + l , j ) +  V(i-1,;) 

(5) 

As expected for a problem of cylindrical symmetry, this equation differs from a simple 
average by giving slightly more weight to the points at larger radius. The equation 
was chosen to approximate Laplace’s equation to terms in third order. The agreement 
may be verified by doing a Taylor series expansion about V( i, j )  on the points V( i, j + l ) ,  
V(i  + l,;), etc, and substituting the resulting terms in equation ( 5 ) .  The first- and third- 
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order terms vanish by symmetry. The second-order terms vanish when Laplace's 
equation is enforced, leaving V =  VCi,j). 

To ensure that the equipotentials would have no  cusp on the J axis, we demanded 
that V ( 0 , j )  = V (  1 , j )  after each of the 400 iterations. Sufficient iterations were made 
to ensure that the change between the final value of each V ( i , j )  and the penultimate 
one was less than one part in a thousand. 

Once a stable field was calculated the centre of the array was expanded to obtain 
more detail in the vicinity of the plates. To expand the field new boundaries were 
chosen at i = 25 and j = i 12. All the points outside the new boundaries were then 
thrown out. The field within the boundaries was expanded to the original 51 x 5 1 size 

I I P  

0 

- 2  

Figure 1. Equipotentials: V/V,=O, -0.1, -0.2, -0.4, -0.6, -0.8, -1.0 for K = ;  ( a ) ,  1 
( b )  and 3 (c ) ,  respectively. Only one quadrant is shown. The axis of symmetry is vertical, 
the plate i V = - Vo) is bold, the median plane ( V = 0 )  is horizontal and at the top of each 
figure. 
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by inserting additional field points between the existing points. Holding the potential 
at the new boundary and plates fixed the difference equation was again employed to 
generate the potential at each point of the expanded field. 

This procedure was repeated twice, yielding plates located at j = *6,  0 S i S 12 and 
their surrounding potential field. The results of this program were compared with 
those of method 1. The point by point agreement was generally within kO.01 V,. For 
a few points at the edge of the plates the relaxation method gave results up to 0.08 V, 
higher than the Love method. We believe this discrepancy arises because the capacitor 
plates used in the relaxation method are not infinitesimally thin. 

,Plate 

7 
1.0 

\ I 

0- 

Figure 2. E / 2 V o K - '  against p in the median plane. The plate is the bold line at the top 
of the figure: -.-, K = 'i; -, K = 1 ; ---, K = 3 .  

4. Results 

Plots of the equipotentials generated using Love's method are shown in figure 1. These 
plots would not be noticeably different if points generated by the relaxation method 
were used instead. Because V ( p ,  z) is an odd function of z, the plots only cover one 
quadrant. In  comparing our plot for K = 1 with that of Atkinson et a1 (1983), the 
reader may note that the equipotentials of the former lack the sharp breaks of the 
latter. These breaks arose because Atkinson et a1 inadvertantly assumed a charge 
distribution on the planes z = * ~ / 2  even for p > 1 .  

Finally in figure 2 we plot the electric field in the median plane of the three 
capacitors as a function of p. 

Copies of either program are available upon request. 
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